NEW YORK UNIVERSITY INSTITUTE OF MATHEMATICAL SCIENCES

Enumeration Without Repetition

HILARY PUTNAM

PREPARED UNDER
CONTRACT NO. AF49(638)-777
MATHEMATICAL SCIENCES DIRECTORATE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

> REPRODUCTION \mathbb{N} WHOLE OR IN PARTD IS PERMITTEN FOIR ANY PURPGBE OF THE UNITED STATES GOVERNMENT.

New York University
Institute of Mathematical Sciences
Mathematical Sciences Directorate
Air Force Office of Scientific Research Washington 25, D.C. AFOSR 818

ENUMERATION WITHOUT REPETITION

Hilary Putnam

June 8, 1961
Contract No. AF 49(638)-777

ABSTRACT: An example is constructed of a recursively enumerable family of recursively enumerable sets which can not be recursively enumerated without repetitions.
"Qualified requestors may obtain copies of this report from the ASTIA Document Service Center, Arlington Hall Station, Arlington 12, Virginia. Department of Defense contractors must be established for ASTIA services, or have their "need-to-know" certified by the cognizant military agency of their project or contract".

The research reported in this document has been sponsored by the Mathematical Sciences Directorate, Air Force Office of Scientific Research, under Contract No. AF 49(638)-777.

ENUMERATION WITHOUT REPETITION Hilary Putnam

The purpose of this note is to answer the question ${ }^{1}$: "Can every recursively enumerable family of recursively enumerable sets ${ }^{2}$ be enumerated without repetition ${ }^{3}$?" This question was, of course, stimulated by Friedberg's very surprising result that the recursively enumerable sets can be enumerated without repetition ${ }^{4}$. We answer the question in the negative by the following construction.

We define a family of recursively enumerable sets $A_{0}, A_{1}, A_{2}, \ldots$, as follows:

(i) i εA_{i}	for all i
(ii) $2 y \in A_{2 y+1}$	if $y \varepsilon S$
(iii) $2 y+1 \varepsilon A_{2 y}$	if $y \varepsilon S$
(iv) Nothing belongs to A_{i}, unless its doing so follows	
	from (i)-(iii)

---where S is any recursively enumerable set whose complement is not recursively enumerable. Then the set A_{i} is recursively enumerable. (In fact, A_{i} has either one or two members for every i), and the relation $i \varepsilon A_{j}$ is also recursively enumerable, so that F is a recursively enumerable family of recursively enumerable sets. (To verify this, observe that $i \varepsilon A_{j} \equiv i=j \vee(E z)\left(i=2 z Q^{\circ} j=2 z+1 \mathcal{C}_{z} \varepsilon S\right)$ $\mathrm{v}\left(\mathrm{Ez}_{\mathrm{z}}\right)\left(j=2 z 母_{i}=2 z+1 \varphi_{z} \varepsilon S\right)$. Only existential quantifiers occur in the definition (and conjunction,

disjunction, and recursively enumerable predicates); hence the predicate i εA_{j} is recursively enumerable). However, the family F cannot be enumerated without repetition! For suppose it could be, say as B_{O}, B_{1}, \ldots where the predicate $i \varepsilon B_{j}$ is recursively enumerable, and $B_{i} \neq B_{j}$ for $i \neq j$. Then we could define:
(1) $y \in \bar{S} \equiv(E x)(E z)\left(2 y \in B_{x} \notin 2 y+1 \varepsilon B_{z} f x \neq z\right)$,
and hence the complement of S would be definable in terms of recursively enumerable predicates using conjunction and existential quantification alone, and so would be recursively enumberalbe, contrary to the choice of S as an recursively enumerable set whose complement is not recursively enumerable (i.e., a non-recursive recursively enumerable set).

To verify (l) observe that if $y \varepsilon S$, then $A_{2 y}=A_{2 y+1}=\{2 y, 2 y+1\}$ and no other A_{j} contains either $2 y$ or $2 y+1$; so in this case the numbers $2 y, 2 y+1$ belong to one and the same of the sets A_{0}, A_{1}, \ldots (note, however, that the set in question ... i.e. $\{2 y, 2 y+1\} \ldots$ is repeated in the enumeration A_{O}, A_{1}, \ldots. . And if $y \in \bar{S}$, then $A_{2 y}=\{2 y\}$ and. $A_{2 y+1}=\{2 y+1\}$: so in this case the numbers $2 y, 2 y+1$ belong to different sets A_{i}. An enumeration without repetition of the sets A_{i} would give a proof-procedure for showing that two numbers belong to different sets A_{i} (since a, b belong to different sets $A_{i} \equiv a, b$ belong to sets B_{i} with different indices), and hence a way of enumerating the complement of S; it is for this reason that such an enumeration cannot exist.

Footnotes

1 This question was posed by Marion Pour-El.
2 A family of sets is called a recursively enumerable family of recursively enumerable sets if the diadic relation to i εA_{j} is recursively enumerable for at least one ordering A_{0}, A_{1}, \ldots of the family (with or without repetition). By Kleene's " $\mathrm{S}_{\mathrm{n}}^{\mathrm{m}}$ theorem ([2], p. 342) this is equivalent to saying that there is a recursive or even primitive recursive, function t such that $t(0), t(1), \ldots$ are gődel numbers of A_{0}, A_{1}, \ldots respectively, with respect to the standard gödel numbering of all recursively enumerable sets.

3 The enumeration A_{0}, A_{1}, ... of a family of sets F is an "enumeration without repetition" just in case (1) the diadic relation i εA_{j} is recursively enumerable, and (2) $i \neq j \neq A_{i} \neq A_{j}$.

4 Vide [1].

REFERENCES

[1] Richard M. Friedberg, Three theorems on recursive enumberation, Journal of Symbolic Logic, vol. 23, (1958), pp. 309-316.
[2] Stephen Cole Kleene, Introduction to metamathematics, New York, 1952.

DISTRIBUTION LIST AIR TORCE OFFICE OF SCIENTIFIC RESEARGH MATHEMATICAL SCIETCES DIRECTOFATE (ONE COPY UNLESS OTHER ISE NOTED)

ALABAMA

Commander
Army Rocket $A_{\text {Guided Missile Agency }}$ ATTN: ORDXRーOTL
Redstone Arsenal, Alabama
BELG IUM
Commander
European Office, ARDC
47 Rue Cantersteen
Brussels, Belgium
CALIFORNIA
Applied Mathematics \notin Statistics Laboratory
Stanford University
Stanford, California
Department of Mathematics
University of California
Berkeley, California
Commander
Air Force Flight Test Center
Attn: Technical Library
Edwards Air Force Base, California
The Rand Corporation
Technical Library
1700 Main Street
Santa Monica, California
Commander
lst Missile Division
ATTN: Operations Analysis Office Vandenburg Air Force Base, California

CONNECTICUT

Department of Mathematics
Yale University
Now Haven, Connecticut

DISTRICT OF COLUMBIA
Office of Naval Research
Department of the Navy
ATTN: Code 432
Washington 25, D. C.
Director
Department of Commerce
Office of Technical Services
Washington 25, D. C.
Administrator
National Aeronautics \notin Space Administration
ATTN: Documents Library
1520 H Street, N. T.
rashington 25, D. C.
Library
National Bureau of Standards Washington 25, D. C.

Data Processing Systems Division
National Bureau of Standards ATTN: Mr, Russell A. Kirsch Washington 25, D. C.

Applied Mathematics Division National Bureau of Standards Washington 25, D. C.

Headquarters, USAF
Assistant for Operations Analysis
Deputy Chief of Staff,
Operations, AFOOA
Washington 25, D. C.
Commander
Air Force Office of Scientific Research
ATTN: SRM
rashington 25, D. C.

Director
U. S. Naval Research Laboratory

ATTN: Library
Washington 25, D. C.
Commander, AFRD
ATTN: Technical Library Washington $25, \mathrm{D}$. C.

National Science Foundation
Program Director for Mathematical Sciences
rashington 25, D. C.
Canadian Joint Staff
ATTN: DRB/DSIS
2450 Massachusetts Avenue, N. W. Washington 25, D. C.

ILLINOIS

Department of Mathematics Northwestern University
Evanston, Illinois
Laboratories for Applied Sciences University of Chicago Museum of Science and Industry
ATTN: Library, $\omega 305$
Chicago 37, Illinois
Department of Mathematics
University of Chicago
Chicago 37, Illinois
Department of Mathematics University of Illinois Urbana, Illinois

INDIANA
Department of Mathematics Purdue University
Lafayette, Indiana

MARYLAND

Institute for Fluid Dynamics and Applied Mathematics
University of Maryland College Park, Maryland

Mathematics and Physics Library
The Johns Hopkins University
Baltimore, Maryland
Director
National Security Agency ATTN: Dr. H. H. Campaign Fort George G. Meade, Maryl and

MASSACHUSETTS

Department of Mathematics
Harvard University
Cambridge 38, Massachusetts
Department of Mathematics
Massachusetts Institute of Technology
Cambridge 38, Massachusetts
Commander
Detachment 2, AFRD
ATTN: Technical Library
L. G. Hanscom Field

Bedford, Massachusetts
MICHIGAN
Department of Mathematics Wayne State University
Detroit l, Michigan

MINNESOTA

Department of Mathematics Folwell Hall
University of Minnesota
Minneapolis, Minnesota
Department of Mathematics
Institute of Technology
Engineering Building
University of Minnesota
Minneapolis, Minnesota

MISSOURI

Department of Mathematics
Washington University
St. Louis 8, Missouri
Department of Mathematics University of Missouri
Columbia, Missouri

NEBRASKA

Commander
Strategic Air Command
ATTN: Operations Analysis
Offutt Air Force Base
Omaha, Nebraska
NEW JERSEY
The James Forrestal Research Center Library
Princeton University
Princeton, New Jersey
Library
Institute for Advanced Study
Princeton, New Jersey
Department of Mathematics
Fine Hall
Princeton University
Princeton, New Jersey
Commanding General
Signal Corps Engineering Laboratory
ATTN: SIGFM/EL-RPO
Ft. Monmouth, New Jersey
NET MEXIC 0
Commander
Air Force Missile Development Center
ATTN: Technical Library, $H D O I$
Holloman Air Force Base, N. M.
Commander
Air Force Special Veapons Center
ATTN: Technical Library, SIOI
Kirtland Air Force Base
Albuquerque, New Mexico
NE ${ }^{\mathrm{T}}$ YORK
Professor J. Wolfowitz
Mathematics Department
White Hall
Cornell University
Ithaca, New York
Department of Mathematics
Syracuse University
Syracuse, New York

Institute for Mathematical Sciences
New York University
ATTN: Professor M. Kline
25 Waverly Place
New York 3, New York
Institute for Aeronautical Sciences
ATTN: Librarian
2 East 64th Street New York 16, New York

NORTH CAROLINA
Department of Mathematics
University of North Carolina
Chapel Hill, North Carolina
Department of Statistics University of North Carolina Chapel Hill, North Carolina

Office of Ordnance Research (2)
Box CM
Duke Station
Durham, North Carolina
Department of Mathematics
Duke University
Duke Station
Durham, North Carolina
OHIO
P. O. Box AA
right-Patterson Air Force Base Ohio

Commander
Wright Air Development Division ATTN: WCOSI
Tright-Patterson Air Force Base Ohio

Commander
Aeronautical Research Laboratories
ATTN: Technical Library Wright-Patterson Air Force Base Ohio

MAR 5 1960 ${ }^{2}$ ate Due

